Visions and elements for MariaDB replication
APls

Kristian Nielsen
knielsen@askmonty.org

MariaDB Developer
Monty Program AB

MariaDB meeting, Istanbul, 2010

J MariaDB



Outline

My long-term visions for replication
Elements of a replication API

How to implement the visions using the API

,4 MariaDB



Outline

il My long-term visions for replication
y long

_< MariaDB



Visions

m Crash-safe replication
m Simple change of replication topology
m Global transaction id . ..

m Group commit
m Synchronous replication (Galera)
m Parallel replication

m Cheaper durability
m Less fsync(), less logs

m Pluggable replication (Tungsten, ...)

ﬂ MariaDB



Elements of a replication API

_< MariaDB



Transaction coordinator (TC) plugin [MWL#132]

m Does 2-phase commit between engines and binlog
m Recover into consistent state after crash

New API to allow plugin to take the role of TC
m Ability to use alternative binlog implementation
m Support group commit

m Provide consistent commit order between binlogs and
engines
m Allow plugin to control commit order

ﬂ MariaDB



Group commit benchmark

Group commit benchmark
1800

1600
1400
1200

1000

Qrs

a00

600

1 2 3 4 3] 8 12 168 24 32 45 B 95 128 196 256 384 512
MNum ber ofthreads

B 500, groupeommit <#-SD0, no group commit ¥ HOD, group commi =& HOD, na group commit

J MariaDB



Group commit

Extends the storage engine API:
m Engine independent

m TC independent (allow alternative binlog plugin)
m Preserve consistent commit order
m Obtain corresponding binlog position (without FTWRL)
m Hot backups (XtraBackup, mysgldump
-single-transaction)
m Actually consistent START TRANSACTION WITH
CONSISTENT SNAPSHOT
m Safely release InnoDB locks early
B Safe —innodb-flush-log-at-trx—commit=0,

recovering lost transactions from binlog
_af{ MariaDB



Replication event generators [MWL#107]

m Hooks around the server to get all events that modify the
database (INSERT, CREATE TABLE, etc.)

m Allow arbitrary plugin to subscribe, not just binlog
m Non-materialised API

m Do not enforce a specific in-memory or in-disk format

m Allow consumer to choose which information to use
(eg. column index vs. name)

m No least-common-denominator, no wasted copy of
unneeded data

m Stacked generators to generalise binlog format

m Row-based is stacked on top of statement
m Want to support PBXT engine-level replication

m Important to have lazy materialisation
_af{ MariaDB



Replication event applier [MWL#133]

m Generalisation of slave SQL thread
m Again non-materialised, "provider API"
m Plugin supplies whatever information it has
m Eg. accept either column name or column index
m Error if insufficient information
m Clean way to create DDL and DML-capable background
threads

ﬂ MariaDB



Default materialised event format

m Eg. Google protobuf generation filter and event applier
m Make it easier to do simple plugins
m Not require everyone to implement their own event format

m Enable eg. replication transports that are agnostic to
underlying format

m Maybe can use existing binlog event format

ﬂ MariaDB



Priority transactions

m Engines delegate the decision about how to handle parallel
transactions that conflict

Let second transaction wait (normal)
Forcibly rollback first transaction (high-priority transactions)

m Not directly related to replication, but seems to be related

m Galera needs it
m | think also parallel replication could use it

ﬂ MariaDB



Outline

How to implement the visions using the API

MariaDB



How does this help Galera?

m Control commit order

m Galera can implement a TC plugin
m Control commit, including re-order or rollback transactions

B Engine-independent
m Guarantee consistent commit order (even cross-engine)
m Obtain primary key values

m Galera needs it to detect conflicting transactions
m Event generator AP will provide this engine-independent

ﬂ MariaDB



How does this help Galera?

m Obtain and apply events

m Galera will want to use a default materialised event format

m But also needs special information, like need for total order
for DDL etc.

m Stacked event model seems well suited here

m Priority transactions
m Needed by the Galera replication algorithm

ﬂ MariaDB



How does this help global transaction ID?

m Provide engine-independent and
binlog-plugin-independent consistent commit order

m Engines can keep track of last local transaction ID

m Binlog implementation can map local transaction ID to
global transaction 1D

m Easily optain global transaction ID ("binlog position") from
any server state.

ﬂ MariaDB



How does this help crash-safety?

m Much can be done within current binlog (ie. global
transaction ID)
m | think eventually a new binlog format is needed
m Current one is not very extensible
m Flush is expensive, and no protection against partial writes
m Bad to put details like master file names and log rotations
into events
m Keep current binlog as default catch-all

m Alternative implementations with more retrictions can be
more performant and robust

m Eg. disallow mixed InnoDB/MyISAM transactions.

ﬂ MariaDB



Parallel replication

m New binlog implementation that writes transactions
interleaved, but keeping COMMIT order

m Original parallelism from master kept intact

m Slave can safely execute interleaved events in parallel, as
long as original COMMIT order is respected.

m Can speculatively execute T2 across T1 commit, but may
need to rollback T2 in case of conflict

m Probably restricted to transactional MVCC engines

ﬂ MariaDB



Conclusion

Informal discussion session after lunch

Questions?



Group commit benchmark

Details:

m Simple REPLACE query

B innodb_flush_log_at_trx_ commit=1

B sync_binlog=1

m Binlog enabled and disabled

m Digital Western 10k HDD and Intel X25-M SSD
Observation:

m With binlog disabled, scales well with more threads due to
group commit

m With binlog enabled, no scaling due to broken group

commit
ﬂ MariaDB



	My long-term visions for replication
	Elements of a replication API
	How to implement the visions using the API

