
Visions and elements for MariaDB replication
APIs

Kristian Nielsen
knielsen@askmonty.org

MariaDB Developer
Monty Program AB

MariaDB meeting, Istanbul, 2010



Outline

1 My long-term visions for replication

2 Elements of a replication API

3 How to implement the visions using the API



Outline

1 My long-term visions for replication

2 Elements of a replication API

3 How to implement the visions using the API



Visions

Crash-safe replication
Simple change of replication topology

Global transaction id . . .

Group commit
Synchronous replication (Galera)
Parallel replication
Cheaper durability

Less fsync(), less logs

Pluggable replication (Tungsten, . . . )



Outline

1 My long-term visions for replication

2 Elements of a replication API

3 How to implement the visions using the API



Transaction coordinator (TC) plugin [MWL#132]

Does 2-phase commit between engines and binlog
Recover into consistent state after crash

New API to allow plugin to take the role of TC
Ability to use alternative binlog implementation
Support group commit
Provide consistent commit order between binlogs and
engines
Allow plugin to control commit order



Group commit benchmark



Group commit

Extends the storage engine API:
Engine independent
TC independent (allow alternative binlog plugin)
Preserve consistent commit order

Obtain corresponding binlog position (without FTWRL)
Hot backups (XtraBackup, mysqldump
-single-transaction)
Actually consistent START TRANSACTION WITH
CONSISTENT SNAPSHOT
Safely release InnoDB locks early
Safe -innodb-flush-log-at-trx-commit=0,
recovering lost transactions from binlog



Replication event generators [MWL#107]

Hooks around the server to get all events that modify the
database (INSERT, CREATE TABLE, etc.)
Allow arbitrary plugin to subscribe, not just binlog
Non-materialised API

Do not enforce a specific in-memory or in-disk format
Allow consumer to choose which information to use
(eg. column index vs. name)
No least-common-denominator, no wasted copy of
unneeded data

Stacked generators to generalise binlog format
Row-based is stacked on top of statement
Want to support PBXT engine-level replication
Important to have lazy materialisation



Replication event applier [MWL#133]

Generalisation of slave SQL thread
Again non-materialised, "provider API"

Plugin supplies whatever information it has
Eg. accept either column name or column index
Error if insufficient information

Clean way to create DDL and DML-capable background
threads



Default materialised event format

Eg. Google protobuf generation filter and event applier
Make it easier to do simple plugins

Not require everyone to implement their own event format

Enable eg. replication transports that are agnostic to
underlying format
Maybe can use existing binlog event format



Priority transactions

Engines delegate the decision about how to handle parallel
transactions that conflict

1 Let second transaction wait (normal)
2 Forcibly rollback first transaction (high-priority transactions)

Not directly related to replication, but seems to be related
Galera needs it
I think also parallel replication could use it



Outline

1 My long-term visions for replication

2 Elements of a replication API

3 How to implement the visions using the API



How does this help Galera?

Control commit order
Galera can implement a TC plugin
Control commit, including re-order or rollback transactions

Engine-independent

Guarantee consistent commit order (even cross-engine)
Obtain primary key values

Galera needs it to detect conflicting transactions
Event generator API will provide this engine-independent



How does this help Galera?

Obtain and apply events
Galera will want to use a default materialised event format
But also needs special information, like need for total order
for DDL etc.
Stacked event model seems well suited here

Priority transactions
Needed by the Galera replication algorithm



How does this help global transaction ID?

Provide engine-independent and
binlog-plugin-independent consistent commit order
Engines can keep track of last local transaction ID
Binlog implementation can map local transaction ID to
global transaction ID
Easily optain global transaction ID ("binlog position") from
any server state.



How does this help crash-safety?

Much can be done within current binlog (ie. global
transaction ID)
I think eventually a new binlog format is needed

Current one is not very extensible
Flush is expensive, and no protection against partial writes
Bad to put details like master file names and log rotations
into events

Keep current binlog as default catch-all
Alternative implementations with more retrictions can be
more performant and robust

Eg. disallow mixed InnoDB/MyISAM transactions.



Parallel replication

New binlog implementation that writes transactions
interleaved, but keeping COMMIT order
Original parallelism from master kept intact
Slave can safely execute interleaved events in parallel, as
long as original COMMIT order is respected.
Can speculatively execute T2 across T1 commit, but may
need to rollback T2 in case of conflict
Probably restricted to transactional MVCC engines



Conclusion

Informal discussion session after lunch

Questions?



Group commit benchmark

Details:
Simple REPLACE query
innodb_flush_log_at_trx_commit=1

sync_binlog=1

Binlog enabled and disabled
Digital Western 10k HDD and Intel X25-M SSD

Observation:
With binlog disabled, scales well with more threads due to
group commit
With binlog enabled, no scaling due to broken group
commit


	My long-term visions for replication
	Elements of a replication API
	How to implement the visions using the API

