
Kristian Nielsen - Understanding skew factors in Simplex/Improved
Perlin Noise

February 14th, 2015
Understanding skew factors in Simplex/Improved Perlin Noise

[Here is a PDF version for readers whose browser does not understand MathML.]

The Simplex Noise (or Improved Perlin Noise) algorithm uses a somewhat mysterious "skew
factor" of 3√ -1

2 . I did not find any really satisfactory explanation for this factor in the descriptions

of Simplex Noise that I read. But I managed to work it out nevertheless, which I thought was a
fun exercise and worth a quick write-up.

Simplex noise is constructed by
assigning random values to each
point in a simplex grid. The
simplex grid is a tiling of the plane
using rhombuses, each rhombus
consisting of two equilateral
triangles. See the figure on the
right.

Given a point (𝑥, 𝑦) (expressed in
normal rectangular coordinates),
we first transform the coordinates
into (𝑢, 𝑣) expressed in the simplex
grid. Then we take the integer
parts of u and v to find the corners
of the containing equilateral
triangle, and take the random
values assigned to these corners.
The "noise value" of the original
point (𝑥, 𝑦) is then some suitable
interpolation of these values with
respect to the distance from (𝑥, 𝑦)
to each corner.

The implementation of this algorithm is explained in detail in several places. The code to
transform into and back out of the simplex grid might look like this:

final double F2 = 0.5*(Math.sqrt(3.0)-1.0);
double s = (xin+yin)*F2;
int u = fastfloor(xin+s);
int v = fastfloor(yin+s);
final double G2 = -(3.0-Math.sqrt(3.0))/6.0;
double t = (u+v)*G2;
double X0 = u+t;
double Y0 = v+t;

So the question is, where do these funny factors F2 and G2 come from?

To understand this, let us first consider the general form of the transformation from simplex
coordinates (𝑢, 𝑣) in the grid spanned by 𝑢→ and 𝑣→ to the rectangular coordinates (𝑥, 𝑦). It is

𝑥 = 𝑎𝑢 + 𝑏𝑣
𝑦 = 𝑐𝑢 + 𝑑𝑣

where 𝑢→= (𝑎, 𝑐) and 𝑢→= (𝑏, 𝑑). So this requires 4 multiplications in the general case.

However, we can freely choose which simplex grid to use! So we can try to choose one that
reduces the computational work needed.

First, we can choose the orientation of the grid so that 𝑢→ and 𝑣→ are symmetric around the

diagonal 𝑥 = 𝑦. Then 𝑎 = 𝑑 and 𝑏 = 𝑐, so we can write the transformation as

𝑥 = (𝑎 − 𝑏)𝑢 + 𝑏(𝑢 + 𝑣)
𝑦 = (𝑎 − 𝑏)𝑣 + 𝑏(𝑢 + 𝑣)

Second, we can choose the scale of the grid so that (𝑎 − 𝑏) = 1, and then we get simply

𝑥 = 𝑢 + 𝑡
𝑦 = 𝑣 + 𝑡

where 𝑡 = 𝑏(𝑢 + 𝑣). This simpler form requires only a single multiplication.

This is exactly the form we see in the above code snippet, with G2 being the name for the
constant 𝑏. We can work out from this that the vectors that span the grid used by the code are

𝑢→= (1 − 3− 3√
6 , − 3− 3√

6)

𝑣→= (− 3− 3√
6 ,1 − 3− 3√

6)

The interested reader is encouraged to check that 𝑢→, 𝑣→, and 𝑢→ + 𝑣→ all have the same length, so
that the triangles that form the grid indeed end up being equilateral.

Working out the inverse of the transformation (again a good exercise for the interested reader)
leads to another transformation of the same simple form, this time with the constant F2 = 3√ -1

2 as

seen in the code.

So I believe this is the explanation of the mysterious factors F2 and G2 in the example code
found by Google searches on the net. They arise from the choice of the simplex grid to use.
This choice is made to make the associated coordinate transformation use only a single
multiplication, rather than the four required in the general case. This makes the
implementation of the algorithm more efficient. Pretty clever, right?

Tags: graphics, math, performance, programming

