
Group commit issues for the storage engine
API

Kristian Nielsen
knielsen@askmonty.org

MariaDB Developer
Monty Program AB

O’Reilly MySQL Conference & Expo 2010



Outline

1 Group commit

2 The problem

3 Proposed solution

4 Conclusion



Commit and durability

The “D” in ACID means durability
When commit returns successfully, changes are
guaranteed to persist even in case of crash
Typically requires an expensive fsync() or similar.

Thread1
Update in-memory buffers
write() to transaction log
fsync() transaction log



Commit in multiple threads

Thread1 Thread2 Thread3
Update buffers

Update buffers
Update buffers

write() log
fsync() log . . .

write() log
write() log wait . . .
wait . . .

fsync() done (wake up)
fsync() log

(wake up) fsync() done
fsync() log
fsync() done



Optimisation: Group commit

Thread1 Thread2 Thread3
Update buffers

Update buffers
Update buffers

write() log
fsync() log . . .

write() log
write() log wait . . .
wait . . .

fsync() done (wake up)
fsync() log for both threads . . .
fsync() done

(wake up)



Group commit: broken since 2005

. . . but it does not work!
Bug#13669
Peter Zaitsev, September 30, 2005
"Group commit is broken in 5.0"
http://bugs.mysql.com/bug.php?id=13669

http://bugs.mysql.com/bug.php?id=13669


Group commit benchmark



Group commit benchmark

Details:
Simple REPLACE query
innodb_flush_log_at_trx_commit=1

sync_binlog=1

Binlog enabled and disabled
Digital Western 10k HDD and Intel X25-M SSD

Observation:
With binlog disabled, scales well with more threads due to
group commit
With binlog enabled, no scaling due to broken group
commit



The problem

Binlog and engine commit using 2-phase commit / XA
XA uses 2-phase prepare() and commit()

InnoDB holds a global mutex across prepare() and
commit()

Result is complete serialisation, with no opportunity for
transactions to queue up for group commit



The problem: serialised commit

Thread1
InnoDB prepare()

Update buffers
write() log
fsync()
lock(prepare_commit_mutex)

Binlog
lock(LOCK_log)
Binlog write()
Binlog fsync()
unlock(LOCK_log)

InnoDB commit()
Update buffers
unlock(prepare_commit_mutex)
write() log
fsync()



The problem: serialised commit

Thread1 Thread2 Thread3
prepare()

lock()
prepare()

Binlog Wait . . . prepare()
commit() Wait . . .

unlock() . . . wake up
lock()

Binlog
commit()

unlock() . . . wake up
lock()

Binlog
commit()

unlock()



Why all the locking and fsync()?

XA needed to keep engines and binlog in sync after crash
Otherwise could get difference between engine and binlog
(and hence slaves).

Same commit order needed in InnoDB and binlog
Otherwise InnoDB hot backup / XtraBackup may create
state that does not exist in binlog, causing inconsistency on
slaves.
Could also use for START TRANSACTION WITH
CONSISTENT SNAPSHOT
Could also use for global transaction ID.



Idea for a solution

InnoDB commit() part has a fast part and a slow part
The fast part updates in-memory buffers and fixes the
commit order
The slow part does write() and fsync() of the
transaction log

Only the fast part needs to be synchronised with binlog
commit order
Only the slow part needs to participate in group commit
So split the fast part out into an (optional) separate
handlerton call



start_commit()

Optional
Called before commit()

Guaranteed to be called in same order as binlog commit
Idea is to do as little as needed to ensure commit order

commit()

Same as existing handlerton commit call
Do “the rest” of commit (log write, fsync(), etc.)
Not guaranteed in same order as binlog commit
Backwards compatible



Transaction commit pseudocode

prepare(this)

Queue up for group commit
If (binlog fsync is running)

Wait until signalled
Else (binlog fsync is not running)

For (all queued transactions T)
Write T to binlog

fsync() binlog
For (all queued transactions T)

start_commit(T)
Signal T to wakeup

commit(this)

(Also wake up transactions queued during fsync)



InnoDB start_commit() and commit()

InnoDB commit code is already structured in this way

start_commit()
Read binlog position
trx->flush_log_later = TRUE;
innobase_commit_low(trx);
trx->flush_log_later = FALSE;

commit()
trx_commit_complete_for_mysql(trx)

Can also handle group commit for multi-engine transactions



Other ideas?

Other possibilities for fixing group commit
Do not require same commit order

Find some other way to make Innodb hot backup work
correctly

Introduce a global transaction ID
When writing to binlog, assign consecutive number (ID) to
transactions
Pass transaction ID to commit()
Engine can order concurrent commits according to ID



Other ideas (continued)?

Other possibilities for fixing group commit (cont)
Ensure binlog/engine consistency without XA

Durability only for binlog
(innodb_flush_log_at_trx_commit=0)
Do fsync() for binlog before engine commit()
In crash recovery, playback missing transactions from
binlog
Requires storing global transaction ID (or similar) in binlog
and engines.

Other suggestions?



Conclusion

Group commit has been broken for 5 years, an
embarrassment!
I want to fix it!

Slides:

http://knielsen-hq.org/maria/uc2010.pdf

Contact:
knielsen@askmonty.org

http://knielsen-hq.org/maria/uc2010.pdf
knielsen@askmonty.org

	Group commit
	The problem
	Proposed solution
	Conclusion

