
Group commit and related enhancements to
the MariaDB binary log

Michael “Monty” Widenius
monty@askmonty.org

Kristian Nielsen
knielsen@askmonty.org

Monty Program Ab

O’Reilly MySQL Conference & Expo 2011

Outline

1 The problem

2 The solution

3 Add-ons, related and future work

4 Conclusion

Outline

1 The problem

2 The solution

3 Add-ons, related and future work

4 Conclusion

Your choice: poor performance or no crash recovery

InnoDB/XtraDB + binlog need 3 fsync()s for every commit!
fsync() is expensive (BBU raid) to horrendously
expensive (HDD).
Can improve by setting
innodb_flush_log_at_trx_commit=0/2 and
sync_binlog=0

Replication will be hosed after master crashes
No durability (can loose commits during crash)

“A choice between two evils”

sync_binlog=1 performs badly

Commits per second vs. number of connections, RAID 1 HDD

Blue line is with binlog disabled
Red line shows extreme penalty of enabling binlog

SSD does not help enough. . .

Commits per second, RAID 1 SSD with controller cache enabled

Same picture, enabling binlog (red) has extreme penalty
compared to disabled binlog (blue)

Benchmark

innodb_flush_log_at_trx_commit=1, and
sync_binlog=1

Simple transactions
REPLACE INTO t(a,b) VALUES ...

1M rows (fits in memory)
Intel 12-core (24 hyperthread) server with 24GByte RAM
RAID 1 HDD / Intel SSD
Plot commits per second versus number of parallel threads
Benchmark heavily bottlenecked on fsync() I/O
No scaling
We need to fix this!

Benchmark

MySQL Bug#13669
Filed 30 September 2005 by Peter Zaitsev
About time that this was fixed

Multiple transaction logs

InnoDB
trx log T1 T2 T3

T1 T3T2Binlog

InnoDB transaction log records commits in order
When trx hits the InnoDB log, it is committed
Tablespace pages updated later, asynchroneously
Pluggable storage engines

Binlog records transactions in binlog order
Transactions in the binlog are executed on slaves during
replication
When trx hits the binlog, it can be applied on a slave

Multiple transaction logs

InnoDB
trx log T1 T2 T3

T1 T3T2Binlog

Multiple transaction logs
After crash, must ensure that all logs have the same
transactions committed

InnoDB trx log decides what data is on the master
Binlog decides what data is on the slave
Replication can diverge if they are inconsistent with each
other
Inconsistency requires full restore of master from backup or
re-initialising all slaves

Done using standard 2-phase commit

2-phase commit

InnoDB
trx log

Binlog

T1T1 T2T2 T3

T3T2T1

** *

A B C

First we prepare (∗) T2 in InnoDB
Then we commit T2 in binlog
Finally we commit T2 in InnoDB
After crash we will rollback (A), commit (B), or do
nothing (C) in InnoDB
Binlog is authoritative on what is committed and what is not
Guarantees both consistency and durability

Problem: fsync() is expensive

InnoDB
trx log

Binlog

T1T1 T2T2 T3

T3T2T1

** *

A B C

Problem: Use 3 fsync() to disk per commit
(A), or can write T2 in binlog to disk before T2∗ prepare in
InnoDB trx log

After crash unable to recover T2 in InnoDB
(B), or can write T2 commit in InnoDB before T2 in binlog

After crash unable to roll back T2 in InnoDB
fsync() (C), to know where to start crash recovery

Cannot keep binlogs forever

Problem: fsync() is expensive

InnoDB
trx log

Binlog

T1T1 T2T2 T3

T3T2T1

** *

A B C

fsync() is expensive
Especially on traditional commodity hard disks (ca. 10
msec)
Also SSD (in our test around 3 msec) or even with
battery-backed-up RAID
(10 msec corresponds to around 10,000,000 instructions)

Standard solution: group commit
Write and fsync() many parallel transactions at once
Amortise the cost of fsync() over many commits.

Consistent commit order

InnoDB
trx log

T1 T3T2

T1

Binlog

T3 T2

Need same commit order in different engines and in binlog
Online backup takes snapshot of engine
Could end with engine state that does not exist in binlog
Unable to provision a slave from above snapshot

Will either miss T2, or duplicate T3

This is reason InnoDB currently serialises all commits,
breaking group commit and hurting performance
Need a better solution

SMP considerations

Ensuring a particular commit order requires serialisation
One commit at a time

Need care to not cause bad performance on multi-core
SMP
Avoid long queue of threads waiting one after the other

Context switches are not free
Ties the hands of the kernel thread scheduler
If the core is busy that last ran the next-in-line thread, need
either expensive migration to other core, or have all
following threads wait
Best to run the serial part in a single thread

Outline

1 The problem

2 The solution

3 Add-ons, related and future work

4 Conclusion

Extend the storage engine API

Split handlerton prepare() and commit() methods
Fast, serialised part that operates in-memory (optional)
Slow, parallel part that does I/O

Implemented in XtraDB and PBXT
Also easy to implement in Aria

Small change to storage engines (few 100 lines)
Non-supporting storage engines will have group commit
but not consistent commit order

Group commit algorithm

1 Do slow part of prepare() in parallel in InnoDB (first
fsync(), InnoDB group commit)

2 Put transaction in queue, deciding commit order
3 First in queue runs the serial part for all, rest wait

1 Wait for access to the binlog
2 Write all transactions into binlog, in order, then sync

(second fsync())
3 Run the fast part of commit() for all transactions, in order

4 Finally, run the slow part of commit() in parallel, (third
fsync(), InnoDB group commit

Only two context switches per thread (one sleep, one wakeup)

The new commit algorithm

Enqueue

Enqueue

Enqueue

Wait for T1
Wait for T1

Wait for binlog

Write + sync
T1, T2 and T3
to binlog

T1 order

T2 order

T1 InnoDB
T2 InnoDB

T3 InnoDB
T3 order

* prepare stepSerialised execution

wakeup
wakeup

T
im

e

T1*
T2 * T3*

Group commit scales well

Commits per second vs. number of connections, RAID 1 HDD

Yellow line shows group commit performance
Now get scalability, only pay the cost of the 3 ∗ fsync()

Group commit scales well

Commits per second vs. number of connections, RAID 1 SSD

Yellow line shows group commit performance
Now get scalability, only pay the cost of the 3 ∗ fsync()

Extension to storage engine API

Extend the storage engine API
prepare()

Write prepared trx in parallel, with group commit
prepare_ordered()

Called serially, in commit order
commit_ordered()

Called serially, in commit order
Fast commit to memory only

commit()
Commit to disk in parallel, with group commit

Algorithm summary

Storage engine API extension
Optional
Easy to implement for storage engine authors

SMP-friendly behaviour
Ensures consistent commit order between engine(s) and
binlog
Good performance improvement for parallel workloads
Included in in MariaDB 5.3

Outline

1 The problem

2 The solution

3 Add-ons, related and future work

4 Conclusion

Related work

Facebook group commit patch
Group commit does not guarantee consistent commit order

User can disable group commit during backups

Thread takes a ticket in InnoDB prepare(), waits for its
turn in commit()

Mats Kindahl (Oracle) blog
http://mysqlmusings.blogspot.com/

Design sketch only, no published implementation
Uses parallel pwrite() into binlog
Seems not to handle the consistent commit order problem

http://mysqlmusings.blogspot.com/

START TRANSACTION WITH CONSISTENT
SNAPSHOT

Consistent commit order allows to fix START TRANSACTION
WITH CONSISTENT SNAPSHOT

In MySQL, and in MariaDB ≤ 5.2, this does not do much
Suppose a transaction spans both InnoDB and PBXT
Can still happen that we see InnoDB part of a transaction,
but not PBXT part

With group commit this is fixed
Consistent snapshot sees all of a transaction, or nothing,
also for multi-engine transactions

Avoiding FLUSH TABLES WITH READ LOCK

START TRANSACTION WITH CONSISTENT SNAPSHOT
works for binlog too!

New binlog_snapshot_file and
binlog_snapshot_position status variables, similar
to SHOW MASTER STATUS

Obey consistent snapshot rules
Can obtain master binlog position corresponding to given
transaction snapshot
Optimise mysqlbinlog --single-transaction
--master-data

No more need for FLUSH TABLES WITH READ LOCK
Fully non-blocking slave provisioning
No stalling for long-running queries
XtraBackup still better for large/huge data sets

innodb_release_locks_early

Re-write of the similar Facebook feature for the MariaDB
group commit framework
Optionally allows InnoDB to in-memory commit a
transaction and release its row locks already during
prepare phase
Consistent commit order needed to make this safe for
statement-based replication
Can improve performance in the presense of hotspot rows
Only “Mostly safe”, not full ACID, so off by default (Check
MWL#163 or docs for details)

Future work: tunable sleep

In group commit, if we deliberately sleep before writing to
disk, more commits may arrive, reducing total number of
fsync() calls needed
But if no more arrive, will reduce performance

Can then be worse than without group commit
No sleep implemented in first version currently

But status variables to monitor group commit performance
Easy to add sleep option later if experience shows it is
needed
Eventually would be nice to have an optional auto-tuning
sleep

Future work: further reducing fsync() calls

We still need three fsync() calls, even if they can be
shared among several commits.
But suppose we omit the fsync() calls in InnoDB. . .
Then at crash recovery, we may find transactions missing
in InnoDB

But we can re-play them from the binlog!
This idea again is enabled by having consistent commit
order

Can start re-playing from a well-defined point

Potential to further improve commit throughput by a factor
of 3 (in the extreme case)
This is MWL#164

http://askmonty.org/worklog/
Server-RawIdeaBin/?tid=164

http://askmonty.org/worklog/Server-RawIdeaBin/?tid=164
http://askmonty.org/worklog/Server-RawIdeaBin/?tid=164

Future work: even further reducing fsync() calls

Another idea is to implement a group commit mode similar to
innodb_flush_log_at_trx_commit=2

No durability, but still consistent crash recovery
No fsync() penalty at all (sync in background once per
second).

Idea:
Already after prepare phase, commit the transaction to
memory and return to client
Rest of commit algorithm happens in a background thread
(fsync() calls in InnoDB and binlog)
Same connection can even participate twice in the same
group commit!
Many applications need high commit throughput, and can
sacrifice durability, but still need consistent crash recovery

Plea to MySQL@Oracle

Let’s avoid diverging storage engine APIs between
MySQL@Oracle and the other variants
Please start participating in the discussions

This work has been extensively documented and discussed
already during the design phase

Please stop ignoring all development outside of Oracle
Expecting everyone to sign SCA without anything in return
is not reasonable

Outline

1 The problem

2 The solution

3 Add-ons, related and future work

4 Conclusion

Conclusion

Group commit available in MariaDB 5.3.
The new framework enables several nice spin-off feature
Big speedups possible in workloads with high transaction
volume and high parallelism
Much more affordable to run with crash-recovery enabled

Slides:

http://knielsen-hq.org/maria/uc2011.pdf

Contact:
monty@askmonty.org

knielsen@askmonty.org

http://knielsen-hq.org/maria/uc2011.pdf
monty@askmonty.org
knielsen@askmonty.org

	The problem
	The solution
	Add-ons, related and future work
	Conclusion

