
The implementation of MariaDB parallel
replication

Kristian Nielsen

MariaDB Foundation

TeqHub November 2024



TeqHub

Thanks to Nina and Jens for making these TeqHub happen!



About me

Kristian Nielsen <knielsen@knielsen-hq.org>
Chief Architect Replication, MariaDB Foundation
Author of MariaDB group commit, Global Transaction ID
(GTID) and parallel replication
MySQL and MariaDB developer since 2005
Free Software developer since 1990(ish)



Replication background 1

Context: SQL database, application changing data:

INSERT INTO t1 VALUES (10, 100, "FooBar");

UPDATE t2 SET a=a+1 WHERE b=5;

DELETE FROM t3 WHERE pk1=10 and pk2="Knob";

DROP TABLE t4;

...



Replication background 2

Master-slave replication:

M1

M2

S1 S2

M1

M2 S1

S2

Replication is asynchronous.



Replication background 3

Transactions on master run in parallel.
Transactions on slave replicate in commit order

T1 T2 T3
BEGIN

BEGIN
DELETE 3

INSERT 1
BEGIN
INSERT 2

UPDATE 2 <wait>
UPDATE 4

COMMIT <wakeup>
COMMIT

COMMIT



The need for concurrency

Can replicate transactions one-by-one.

Careful row-level locking on master ensures identical result on
slave.

BUT! One by one will be too slow, slave will not be able to
keep up with master.

Need to replicate transactions in parallel.



Parallel replication – the challenge

T1 T2 T3
BEGIN

BEGIN
DELETE 3

INSERT 1
BEGIN
INSERT 2

UPDATE 2 <wait>
UPDATE 4

COMMIT <wakeup>
COMMIT

COMMIT

Different query execution order on slave?



Solution: Optimistic parallel replication

Central idea:

Replicate queries freely in parallel
Replicate commits strictly in sequence
Different query order can lead to conflicts
Detect any conflicts
Resolve conflicts by rollback and retry

Benefits:

Reuse all existing row locking code etc.
Strict commit sequence ensures correctness
No need for separate complex conflict analysis



Solution: Optimistic parallel replication 2

T1 T2 T3
BEGIN

BEGIN
DELETE 3

INSERT 1
BEGIN

UPDATE 2
INSERT 2 <wait>

ROLLBACK
<wakeup> UPDATE 4 BEGIN
COMMIT DELETE 3

COMMIT UPDATE 2
COMMIT



Benchmarks



Benchmarks 2



Scheduling

Schedule round-robin amongst N worker threads:

Worker thread 1

Worker thread 2

transactions Driver thread Worker thread 3

Worker thread 4

Worker thread 5

See do_event() and handle_rpl_parallel_thread()
in sql/rpl_parallel.cc



Handling conflicts

We know the commit order from the master
Say T1,T2,T3, . . .

If T2 waits for T1, that is fine
If T1 waits for T2, it is a conflict

T1 will be blocked from committing before T2
Must abort and roll back T2

Hook the InnoDB locking code to report lock waits
Check the commit order in the hook and handle any
conflicts.

See lock_wait() in
storage/innobase/lock/lock0lock.cc and
thd_rpl_deadlock_check() in sql/sql_class.cc



Ordering commits 1

How to coordinate commits between threads?

Thread A Thread B Thread C Thread D Thread E
Ready 4

... Ready 2 Ready 5

Ready 1
...

...
...

Commit 1
...

...
...

... Commit 2
...

Ready 3
...

...

Commit 3
...

...

Commit 4
...

Commit 5



Ordering commits 2

Commit a group of transactions in one thread

Thread A Thread B Thread C Thread D Thread E
Ready 4

... Ready 2 Ready 5

Ready 1
...

...
...

Commit 1
...

...
...

Commit 2
... End 2

...

Ready 3
...

...

Commit 3
...

...

Commit 4 End 4
...

Commit 5 End 5



Ordering commits 3

The sequencing of commits needs to happen in sequence
Do the serialized execution in a single thread
Avoid the overhead of context switches in the critical path
Completion of transactions can happen out-of-order, no
waiting

See wait_for_prior_commit() in sql/sql_class.h,
wait_for_prior_commit2()in sql/sql_class.cc, and
queue_for_group_commit in sql/log.cc



Optimizing thread scheduling



Optimizing thread scheduling



Conclusion

Parallel processing essential for replication on busy
databases
Optimistic parallel replication a great way to get high
parallelism while ensuring correctness
Careful design needed to reduce bottlenecks around
thread scheduling and coordination
A nice practical use-case of concurrency



Links

Further reading:

Blog: https://knielsen-hq.org/w/
Parallel replication: https:
//mariadb.com/kb/en/parallel-replication/

MariaDB Foundation: https://mariadb.org/

Kristian Nielsen:

Mail: knielsen@knielsen-hq.org
Consulting: consulting@kristiannielsen.dk

Questions?

https://knielsen-hq.org/w/
https://mariadb.com/kb/en/parallel-replication/
https://mariadb.com/kb/en/parallel-replication/
https://mariadb.org/
knielsen@knielsen-hq.org
consulting@kristiannielsen.dk

